skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Yu, Qiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Ecological stability plays a crucial role in determining the sustainability of ecosystem functioning and nature's contribution to people. Although the disruptive effects of extreme drought on ecosystem structure and functions are widely recognized, their effect on the stability of above‐ and belowground productivity remains understudied. We assessed the effects of drought on ecosystem stability using a 3‐year drought experiment established in six Eurasian steppe grasslands. The treatments imposed included ambient precipitation, chronic drought (66% reduction in precipitation throughout the growing season), and intense drought (complete exclusion of precipitation for two months during the growing season). We found that drought, irrespective of how it was imposed, reduced the stability of aboveground net primary productivity (ANPP) but had little impact on belowground net primary productivity (BNPP) stability. Reduced ANPP stability under drought was primarily attributed to changes in subordinate species stability, with mean annual precipitation (MAP) and its variability, historical drought frequency, and the aridity index (AI) also influencing responses to extreme drought. In contrast, BNPP stability was not related to any community factor investigated, but it was influenced by MAP variability and AI. Our findings that above‐ and belowground productivity stability in grasslands are differentially sensitive to multi‐year extreme drought under both common (MAP and AI) as well as unique drivers (plant community changes) highlight the complexity of predicting carbon cycle dynamics as hydrological extremes become more severe. 
    more » « less
  2. Extreme droughts generally decrease productivity in grassland ecosystems1,2,3 with negative consequences for nature’s contribution to people4,5,6,7. The extent to which this negative effect varies among grassland types and over time in response to multi-year extreme drought remains unclear. Here, using a coordinated distributed experiment that simulated four years of growing-season drought (around 66% rainfall reduction), we compared drought sensitivity within and among six representative grasslands spanning broad precipitation gradients in each of Eurasia and North America—two of the Northern Hemisphere’s largest grass-dominated regions. Aboveground plant production declined substantially with drought in the Eurasian grasslands and the effects accumulated over time, while the declines were less severe and more muted over time in the North American grasslands. Drought effects on species richness shifted from positive to negative in Eurasia, but from negative to positive in North America over time. The differing responses of plant production in these grasslands were accompanied by less common (subordinate) plant species declining in Eurasian grasslands but increasing in North American grasslands. Our findings demonstrate the high production sensitivity of Eurasian compared with North American grasslands to extreme drought (43.6% versus 25.2% reduction), and the key role of subordinate species in determining impacts of extreme drought on grassland productivity. 
    more » « less
  3. Abstract Grasslands are subject to climate change, such as severe drought, and an important aspect of their functioning is temporal stability in response to extreme climate events. Previous research has explored the impacts of extreme drought and post‐drought periods on grassland stability, yet the mechanistic pathways behind these changes have rarely been studied.Here, we implemented an experiment with 4 years of drought and 3 years of recovery to assess the effects of drought and post‐drought on the temporal stability of above‐ground net primary productivity (ANPP) and its underlying mechanisms. To do so, we measured community‐weighted mean (CWM) of six plant growth and nine seed traits, functional diversity, population stability and species asynchrony across two cold, semiarid grasslands in northern China. We also performed piecewise structural equation models (SEMs) to assess the relationships between ANPP stability and its underlying mechanisms and how drought and post‐drought periods alter the relative contribution of these mechanisms to ANPP stability.We found that temporal stability of ANPP was not reduced during drought due to grasses maintaining productivity, which compensated for increased variation of forb productivity. Moreover, ANPP recovered rapidly after drought, and both grasses and forbs contributed to community stability during the post‐drought period. Overall, ANPP stability decreased during the combined drought and post‐drought periods because of rapid changes in ANPP from drought to post‐drought. SEMs revealed that the temporal stability of ANPP during drought and post‐drought periods was modulated by functional diversity and community‐weighted mean traits directly and indirectly by altering species asynchrony and population stability. Specifically, the temporal stability of ANPP was positively correlated with functional divergence of plant communities. CWMs of seed traits (e.g. seed width and thickness), rather than plant growth traits (e.g. specific leaf area and leaf nutrient content), stabilized grassland ANPP. Productivity of plant communities with large and thick seeds was less sensitive to precipitation changes over time.These results emphasize the importance of considering both the functional trait distribution among species and seed traits of dominant species since their combined effects can stabilize ecosystem functions under global climate change scenarios. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community‐weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community‐weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community‐weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community‐weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community‐weighted trait means as well as their functional diversity across grassland ecosystems. 
    more » « less
  5. Abstract Asexual reproduction plays a fundamental role in the structure, dynamics and persistence of perennial grasslands. Thus, assessing how asexual reproductive traits of plant communities respond to drought may be key for understanding grassland resistance to drought and recovery following drought.Here, we quantified three asexual reproductive traits (i.e. above‐ground tiller abundance, below‐ground bud abundance and the ratio of tillers to buds) during a 4‐year severe drought and a 2‐year drought recovery period in four grasslands that spanned an aridity gradient in northern China. We also assessed the relationship between these traits and the resistance and recovery of above‐ground net primary productivity (ANPP).We found that drought had limited and largely inconsistent effects on asexual reproduction among drought and recovery years and grasslands overall. Drought increased tiller abundance in the first treatment year and reduced bud banks by the fourth treatment year across grasslands. However, neither of the three asexual reproductive traits were correlated with drought resistance of ANPP. Drought legacies differed among the four grasslands with positive, negative and no legacies evident for the three asexual reproductive traits, and no clear relationship with aridity. Bud banks and tiller to bud ratio decreased and increased, respectively, in the first recovery year, but not in the second recovery year. In contrast to drought resistance, community bud abundance was strongly related to recovery, such that communities with higher bud abundance had greater ANPP recovery following drought.Synthesis. These results suggest that asexual reproductive traits may be important drivers of ecosystem recovery after drought, but that variable responses of these asexual reproduction traits during drought complicates predictions of overall grassland responses. 
    more » « less